Saturday, July 7, 2012

New Trigger For North Atlantic Phytoplankton Blooms Discovered




Every year, in the North Atlantic Ocean, there occurs what’s known as the North Atlantic Bloom. It’s caused an immense number of phytoplankton bursting into existence. The seawater first turns green, and then whitish, as a progression of different species bloom.

What’s the cause of this enormous bloom? Previously it had been known that the bloom coincides with the longer days of spring, and more sunlight.

According to new research just published in the journal Science, there is also another trigger that can cause these blooms, whirlpools, or eddies, that move across the surface layer of the North Atlantic Ocean. These whirling eddies can sustain phytoplankton blooms “in the ocean’s shallower waters where they can get plenty of sunlight to fuel growth, thereby keeping them from being pushed downward by the vagaries of rough processes at the ocean surface."
“Springtime blooms of microscopic plants in the ocean absorb enormous quantities of carbon dioxide, much like our forests, emitting oxygen via photosynthesis. Their growth contributes to the oceanic uptake of carbon dioxide, amounting globally to about one-third of the carbon dioxide we put into the air each year through the burning of fossil fuels. An important question is how this ‘biological pump’ for carbon might change in the future as our climate evolves.”

“In winter, cooling and strong winds generate mixing that pushes phytoplankton into deeper waters, robbing them of sunlight, but drawing up nutrients from depth. As winter turns to spring, days become longer. Phytoplankton are exposed to more sunlight, fueling their growth.”

“Our results show that, due to eddies, the bloom starts even before the sun begins to warm the ocean,” says Amala Mahadevan, an oceanographer at the Woods Hole Oceanographic Institution (WHOI) in Massachusetts and lead author of the Science paper. Co-authors of the paper are Eric D’Asaro and Craig Lee of the University of Washington, and Mary Jane Perry of the University of Maine.

“Every undergraduate who takes an introductory oceanography course learns about the ecological and climate significance of the North Atlantic Bloom — as well as what causes it,” says Don Rice, program director in NSF’s Division of Ocean Sciences, which funded the research. “This study reminds us that, when it comes to the ocean, the things we think we know hold some big surprises.”

The discovery of this ‘new’ mechanism helps to explain the timing of the spring and summer blooms. Though it’s been known to mariners and fishermen for centuries and is clearly visible in satellite images, there are still some aspects of it not well understood. The discovery also brings new insight into why the bloom has a patchy appearance, “it is shaped by the eddies that, in essence, modulate its formation.”

The researchers say that the work wasn’t easy. “Working in the North Atlantic Ocean is challenging,” says Perry, “but we were able to track a patch of seawater off Iceland and follow the progression of the bloom in a way that hadn’t been done before.”

“Our field work was set up with floats, gliders and research ships that all worked tightly together,” says D’Asaro. “They were in the same area, so we could put together a cohesive picture of the bloom.”
The study focused on the phytoplankton that are known as diatoms. Diatoms are silica-based, living in ‘glass houses.’ “When conditions are right, diatoms blooms spread across hundreds of miles of ocean,” says Lee, “bringing life-sustaining food to sometimes barren waters.”

“In April, 2008, Lee, Perry and colleagues arrived in a storm-lashed North Atlantic aboard the Icelandic research vessel Bjarni Saemundsson.”

“They launched specially designed robots in the rough seas. A float that hovered below the water’s surface was also deployed. It followed the motion of the ocean, moving around,” like a giant phytoplankton.

“Lurking alongside the float were six-foot-long, teardrop-shaped gliders that dove to depths of up to 1,000 meters. After each dive, the gliders, working in areas 20 to 50 kilometers around the float, rose to the surface, pointed their antennas skyward and transmitted their stored data back to shore.”

“The float and gliders measured the temperature, salinity and velocity of the water, and gathered information about the chemistry and biology of the bloom itself — oxygen, nitrate and the optical signatures of the phytoplankton.”

“In total, scientists aboard two ships, the WHOI-operated research vessel Knorr and the Bjarni Saemundsson, visited the area four times.”

No comments:

Post a Comment